General Science Objectives

- Observational documentation of the *boundary layer properties* in landfalling tropical storms and cyclones
 - Intensity change and wind diagnosis applications
- Improved understanding of *precipitation processes* and properties
 - QPE applications
- Latent heating processes (BL thermodynamics)
 - impact of precipitation evaporation and downdraft transports on the BL in TS/TC; boundaries
- Ground/observational *validation*

MIPS measurement capabilities (CAMEX/KAMP)

Instrument and measured parameter

 Δt , Δz , height coverage

- 915: $V_h(z)$, w(z), $C_n^2(z)$
- sodar: $V_h(z)$, w(z), $C_T^2(z)$
- ceilometer: $\beta(z)$, cloud base
- MPR: T(z), $r_v(z)$, $r_c(z)$, integrated vapor & liquid

60 s, 105 m 0.1 to 2-4 km

18 s, 25 m, 50 to 200-400 m

15 s, 15 m, 15 to 7600 m

15 min, variable, 0.1-10 km

Landfall of TS Gabrielle

- MIPS set up near Venice, FL
- Co-location with mobile C-band Doppler radar (SMART-R)
- Center of circulation and developing "eye" passed over MIPS & S-R
- Jump in forward speed precluded CAMEX-4 overflights at landfall

Gabrielle path, 0600 11/13 to 1800 11/15 Intensity near TC strength at landfall

Some interesting features

- Electrification properties (electric field), and CG lightning behavior
- Bright band variation
- Wave motions in upper troposphere near circulation center,
- Gravity waves in convective region
- Boundary layer variation
- Wind profiles fetch off land and water
- Eye formation
- Frontal boundary and baroclinic features

Landfall overview, VENF1 C-MAN

- Minimum p of 983 mb
 at 1200 UTC 9/14
- Boundary passage near 1000 UTC
- Cold air over land (22 °C)
- Peak wind gust 32 m/s on W side after eye passage

MIPS 915 MHz data 4-16 UTC 9/14/01

- 915 MHz spectral moments (zenith)
 - SNR
 - -W
 - spectrum width

- E field
 - abundant lightning
- Surface thermo.
 - "frontal" passage

CG flashes, 00-15 UTC, 9/14/02

CG time series, 00-15 UTC, 9/14/01

CG bursts are associated with northern "eyewall" intensification

TBW reflectivity factor: "eye" formation during landfall of Gabrielle (Note the intrusion of dry air east of the center)

TBW, 0901 UTC

TBW, 1200 UTC

Gravity waves in the stable air

Upper tropospheric wave motions, 0840-1140

TBW 88-D, 0942 UTC

Wave motions at 8.5 km AGL near the circulation center

- Relatively uniform anvil echo (top)
- Periodicity in w (middle)

Turbulent flow at 7.0 km, more laminar at 8.5 km (middle and bottom)

$W (w+V_T)$ at 7.0 and 8.5 km (0940-1040)

Variability in the stratiform region

Variability in the bright band (stratiform regions)

• 0548 UTC

- thick
- enhanced SWlayer above
- uniform V_T

• 1247 UTC

- thin
- greater SWbelow
- decreasing V_T

Boundaries: 88D at 1022

horizontal wind, 10 min average, displayed every 30 min

Characteristics of the stratiform regions

Details of the spectral moments in the stratiform region

Time (UTC)

Spectral moments in the trailing stratiform region The ABL depth is defined in the σ_v field

Some interesting features

- Electrification properties (electric field)
- Bright band variation
- Wave motions near circulation center, gravity waves in convective region
- Boundary layer variation
- Wind profiles
- Eye formation
- Frontal boundary and baroclinic features

Future work (prioritized)

- Analysis of landfalling TC/TS (collaborative)
 - Georges (MIPS, DOW, WSR-88D, P-3)
 - Gabrielle (MIPS, SMART-R, WSR-88D)

- CAMEX-4 does not end until the beginning of CAMEX-5. The landfalling TS/TC data base is insufficient.
 - Additional deployments on future landfalls
 - Collaboration with NOAA/HRD and Texas Tech

End

kevin@nsstc.uah.edu

Measurements in the NW eyewall of Georges (1998)

Measurements within the eyewall, 05-17 UTC

Georges: Mean wind profiles during eyewall conditions, 06-14 UTC

Important BL processes

- 1. Downdraft transports
- 2. Rainfall
 evaporation
 (thermodynamics)
- 3. Entrainment into top of BL
- 4. Surface fluxes
- 5. Shear generation of TKE

Radial cross section

